I have implemented a model with an extra SU(2) gauge symmetry, whose new neutral vector bosons X1,X2,X3 mix with the photon and the Z in a large {VP,VZ,VX1,VX2,VX3} mixing matrix. I am able to obtain a valid .spc file in SPheno without fatal warnings. However, MakeCHEP[] is having trouble with the four-vector vertices (the "VVVV" class):
1) At the SARAH level, MakeCHEP[] warns me
Code: Select all
StringJoin::string: String expected at position 2 in
|m1.m2*m3.m4<>(-((<<34>>+sum[j1,1,3,fSU2[1,2,j1] fSU2[1,3,j1]] (ZZ[3,1] ZZ[3,5] (Times[<<2>>]+Times[<<2>>])+ZZ[3,4] <<1>>+ZZ[3,3] (Times[<<3>>]+Times[<<2>>])))/(sum[j1,1,3,fSU2[<<3>>]^2] (ZZ[<<2>>] Plus[<<2>>]-ZZ[<<2>>] Plus[<<2>>])+<<34>>+sum[j1,1,3,fSU2[<<3>>] fSU2[<<3>>]] (-ZZ[<<2>>] ZZ[<<2>>] Plus[<<2>>]+ZZ[<<2>>] Plus[<<3>>]-ZZ[<<2>>] Plus[<<2>>]))))<>m1.m3*m2.m4<>(<<1>>/(<<8>>+ZZ[3,3] (ZZ[<<2>>] Plus[<<2>>]-2 <<1>> <<1>>)))<>m1.m4*m2.m3 .
Error in table 'Vertices ' line 7016 field 'Lorentz part' position 5: Operation expected
I noticed that various four-vector vertices {photon,X1,X2,X3} look like gibberish
Code: Select all
A |VX1 |VX2 |VX3 |1*v9189 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
sum[j1, 1, 3, fSU2[1, 2, j1] ] (ZZ[3, 4] (ZZ[3, 5] ZZ[4, 1] ZZ[4, 3] + (ZZ[3, 3] ZZ[4, 1] - 2 ZZ[3, 1] ZZ[4, 3]) ZZ[4, 5]) + ZZ[4, 4] (ZZ[3, 1] ZZ[3, 5] ZZ[4, 3] + ZZ[3, 3] (-2 ZZ[3, 5] ZZ[4, 1] + ZZ[3, 1] ZZ[4, 5]))) - sum[j1, 1, 3, fSU2[1, 2, j1] fSU2[2, 3, j1]] ZZ[3, 5] ZZ[4, 3] ZZ[4, 4] ZZ[5, 1] + 2 sum[j1, 1, 3, fSU2[1, 2, j1] fSU2[2, 3, j1]] ZZ[3, 4] ZZ[4, 3] ZZ[4, 5] ZZ[5, 1] - sum[j1, 1, 3, fSU2[1, 2, j1] fSU2[2, 3, j1]] ZZ[3, 3] ZZ[4, 4] ZZ[4, 5] ZZ[5, 1] + 2 sum[j1, 1, 3, fSU2[1, 2, j1] fSU2[2, 3, j1]] ZZ[3, 5] ZZ[4, 1] ZZ[4, 4] ZZ[5, 3] - sum[j1, 1, 3, fSU2[1, 2, j1] fSU2[2, 3, j1]] ZZ[3, 4] ZZ[4, 1] ZZ[4, 5] ZZ[5, 3] - sum[j1, 1, 3, fSU2[1, 2, j1] fSU2[2, 3, j1]] ZZ[3, 1] ZZ[4, 4] ZZ[4, 5] ZZ[5, 3] + sum[j1, 1, 3, fSU2[1, 3, j1] ] ZZ[3, 4] ZZ[3, 5] ZZ[5, 1] ZZ[5, 3] + sum[j1, 1, 3, fSU2[1, 3, j1] fSU2[2, 3, j1]] ZZ[3, 5] ZZ[4, 4] ZZ[5, 1] ZZ[5, 3] + sum[j1, 1, 3, fSU2[1, 3, j1] fSU2[2, 3, j1]] ZZ[3, 4] ZZ[4, 5] ZZ[5, 1] ZZ[5, 3] + sum[j1, 1, 3, fSU2[2, 3, j1] ] ZZ[4, 4] ZZ[4, 5] ZZ[5, 1] ZZ[5, 3] - sum[j1, 1, 3, fSU2[1, 2, j1] fSU2[2, 3, j1]] ZZ[3, 5] ZZ[4, 1] ZZ[4, 3] ZZ[5, 4] - sum[j1, 1, 3, fSU2[1, 2, j1] fSU2[2, 3, j1]] ZZ[3, 3] ZZ[4, 1] ZZ[4, 5] ZZ[5, 4] + 2 sum[j1, 1, 3, fSU2[1, 2, j1] fSU2[2, 3, j1]] ZZ[3, 1] ZZ[4, 3] ZZ[4, 5] ZZ[5, 4] - 2 sum[j1, 1, 3, fSU2[1, 3, j1] ] ZZ[3, 3] ZZ[3, 5] ZZ[5, 1] ZZ[5, 4] - 2 sum[j1, 1, 3, fSU2[1, 3, j1] fSU2[2, 3, j1]] ZZ[3, 5] ZZ[4, 3] ZZ[5, 1] ZZ[5, 4] - 2 sum[j1, 1, 3, fSU2[1, 3, j1] fSU2[2, 3, j1]] ZZ[3, 3] ZZ[4, 5] ZZ[5, 1] ZZ[5, 4] - 2 sum[j1, 1, 3, fSU2[2, 3, j1] ] ZZ[4, 3] ZZ[4, 5] ZZ[5, 1] ZZ[5, 4] + sum[j1, 1, 3, fSU2[1, 3, j1] ] ZZ[3, 1] ZZ[3, 5] ZZ[5, 3] ZZ[5, 4] + sum[j1, 1, 3, fSU2[1, 3, j1] fSU2[2, 3, j1]] ZZ[3, 5] ZZ[4, 1] ZZ[5, 3] ZZ[5, 4] + sum[j1, 1, 3, fSU2[1, 3, j1] fSU2[2, 3, j1]] ZZ[3, 1] ZZ[4, 5] ZZ[5, 3] ZZ[5, 4] + sum[j1, 1, 3, fSU2[2, 3, j1] ] ZZ[4, 1] ZZ[4, 5] ZZ[5, 3] ZZ[5, 4] - (sum[j1, 1, 3, fSU2[1, 2, j1] fSU2[2, 3, j1]] (ZZ[3, 4] ZZ[4, 1] ZZ[4, 3] + (-2 ZZ[3, 3] ZZ[4, 1] + ZZ[3, 1] ZZ[4, 3]) ZZ[4, 4]) - sum[j1, 1, 3, fSU2[1, 3, j1] fSU2[2, 3, j1]] ZZ[3, 4] ZZ[4, 3] ZZ[5, 1] - sum[j1, 1, 3, fSU2[1, 3, j1] fSU2[2, 3, j1]] ZZ[3, 3] ZZ[4, 4] ZZ[5, 1] - sum[j1, 1, 3, fSU2[2, 3, j1] ] ZZ[4, 3] ZZ[4, 4] ZZ[5, 1] + 2 sum[j1, 1, 3, fSU2[1, 3, j1] fSU2[2, 3, j1]] ZZ[3, 4] ZZ[4, 1] ZZ[5, 3] + 2 sum[j1, 1, 3, fSU2[1, 3, j1] fSU2[2, 3, j1]] ZZ[3, 1] ZZ[4, 4] ZZ[5, 3] + 2 sum[j1, 1, 3, fSU2[2, 3, j1] ] ZZ[4, 1] ZZ[4, 4] ZZ[5, 3] - (sum[j1, 1, 3, fSU2[2, 3, j1] ] ZZ[4, 1] ZZ[4, 3] + sum[j1, 1, 3, fSU2[1, 3, j1] fSU2[2, 3, j1]] (ZZ[3, 3] ZZ[4, 1] + ZZ[3, 1] ZZ[4, 3])) ZZ[5, 4] - sum[j1, 1, 3, fSU2[1, 3, j1] ] (-2 ZZ[3, 1] ZZ[3, 4] ZZ[5, 3] + ZZ[3, 3] (ZZ[3, 4] ZZ[5, 1] + ZZ[3, 1] ZZ[5, 4]))) ZZ[5, 5] + sum[j1, 1, 3, fSU2[1, 2, j1] fSU2[1, 3, j1]] (ZZ[3, 1] ZZ[3, 5] (ZZ[4, 4] ZZ[5, 3] + ZZ[4, 3] ZZ[5, 4]) + ZZ[3, 4] (ZZ[3, 5] (ZZ[4, 3] ZZ[5, 1] + ZZ[4, 1] ZZ[5, 3]) + ZZ[3, 3] (ZZ[4, 5] ZZ[5, 1] + ZZ[4, 1] ZZ[5, 5]) - 2 ZZ[3, 1] (ZZ[4, 5] ZZ[5, 3] + ZZ[4, 3] ZZ[5, 5])) + ZZ[3, 3] (-2 ZZ[3, 5] (ZZ[4, 4] ZZ[5, 1] + ZZ[4, 1] ZZ[5, 4]) + ZZ[3, 1] (ZZ[4, 5] ZZ[5, 4] + ZZ[4, 4] ZZ[5, 5]))) sum[j1, 1, 3, fSU2[1, 2, j1] ] (ZZ[3, 4] (ZZ[3, 5] ZZ[4, 1] ZZ[4, 3] + (-2 ZZ[3, 3] ZZ[4, 1] + ZZ[3, 1] ZZ[4, 3]) ZZ[4, 5]) + ZZ[4, 4] (-2 ZZ[3, 1] ZZ[3, 5] ZZ[4, 3] + ZZ[3, 3] (ZZ[3, 5] ZZ[4, 1] + ZZ[3, 1] ZZ[4, 5]))) + 2 sum[j1, 1, 3, fSU2[1, 2, j1] fSU2[2, 3, j1]] ZZ[3, 5] ZZ[4, 3] ZZ[4, 4] ZZ[5, 1] - sum[j1, 1, 3, fSU2[1, 2, j1] fSU2[2, 3, j1]] ZZ[3, 4] ZZ[4, 3] ZZ[4, 5] ZZ[5, 1] - sum[j1, 1, 3, fSU2[1, 2, j1] fSU2[2, 3, j1]] ZZ[3, 3] ZZ[4, 4] ZZ[4, 5] ZZ[5, 1] - sum[j1, 1, 3, fSU2[1, 2, j1] fSU2[2, 3, j1]] ZZ[3, 5] ZZ[4, 1] ZZ[4, 4] ZZ[5, 3] + 2 sum[j1, 1, 3, fSU2[1, 2, j1] fSU2[2, 3, j1]] ZZ[3, 4] ZZ[4, 1] ZZ[4, 5] ZZ[5, 3] - sum[j1, 1, 3, fSU2[1, 2, j1] fSU2[2, 3, j1]] ZZ[3, 1] ZZ[4, 4] ZZ[4, 5] ZZ[5, 3] + sum[j1, 1, 3, fSU2[1, 3, j1] ] ZZ[3, 4] ZZ[3, 5] ZZ[5, 1] ZZ[5, 3] + sum[j1, 1, 3, fSU2[1, 3, j1] fSU2[2, 3, j1]] ZZ[3, 5] ZZ[4, 4] ZZ[5, 1] ZZ[5, 3] + sum[j1, 1, 3, fSU2[1, 3, j1] fSU2[2, 3, j1]] ZZ[3, 4] ZZ[4, 5] ZZ[5, 1] ZZ[5, 3] + sum[j1, 1, 3, fSU2[2, 3, j1] ] ZZ[4, 4] ZZ[4, 5] ZZ[5, 1] ZZ[5, 3] - sum[j1, 1, 3, fSU2[1, 2, j1] fSU2[2, 3, j1]] ZZ[3, 5] ZZ[4, 1] ZZ[4, 3] ZZ[5, 4] + 2 sum[j1, 1, 3, fSU2[1, 2, j1] fSU2[2, 3, j1]] ZZ[3, 3] ZZ[4, 1] ZZ[4, 5] ZZ[5, 4] - sum[j1, 1, 3, fSU2[1, 2, j1] fSU2[2, 3, j1]] ZZ[3, 1] ZZ[4, 3] ZZ[4, 5] ZZ[5, 4] + sum[j1, 1, 3, fSU2[1, 3, j1] ] ZZ[3, 3] ZZ[3, 5] ZZ[5, 1] ZZ[5, 4] + sum[j1, 1, 3, fSU2[1, 3, j1] fSU2[2, 3, j1]] ZZ[3, 5] ZZ[4, 3] ZZ[5, 1] ZZ[5, 4] + sum[j1, 1, 3, fSU2[1, 3, j1] fSU2[2, 3, j1]] ZZ[3, 3] ZZ[4, 5] ZZ[5, 1] ZZ[5, 4] + sum[j1, 1, 3, fSU2[2, 3, j1] ] ZZ[4, 3] ZZ[4, 5] ZZ[5, 1] ZZ[5, 4] - 2 sum[j1, 1, 3, fSU2[1, 3, j1] ] ZZ[3, 1] ZZ[3, 5] ZZ[5, 3] ZZ[5, 4] - 2 sum[j1, 1, 3, fSU2[1, 3, j1] fSU2[2, 3, j1]] ZZ[3, 5] ZZ[4, 1] ZZ[5, 3] ZZ[5, 4] - 2 sum[j1, 1, 3, fSU2[1, 3, j1] fSU2[2, 3, j1]] ZZ[3, 1] ZZ[4, 5] ZZ[5, 3] ZZ[5, 4] - 2 sum[j1, 1, 3, fSU2[2, 3, j1] ] ZZ[4, 1] ZZ[4, 5] ZZ[5, 3] ZZ[5, 4] + (-(sum[j1, 1, 3, fSU2[1, 2, j1] fSU2[2, 3, j1]] (ZZ[3, 4] ZZ[4, 1] ZZ[4, 3] + (ZZ[3, 3] ZZ[4, 1] - 2 ZZ[3, 1] ZZ[4, 3]) ZZ[4, 4])) - 2 sum[j1, 1, 3, fSU2[1, 3, j1] fSU2[2, 3, j1]] ZZ[3, 4] ZZ[4, 3] ZZ[5, 1] - 2 sum[j1, 1, 3, fSU2[1, 3, j1] fSU2[2, 3, j1]] ZZ[3, 3] ZZ[4, 4] ZZ[5, 1] - 2 sum[j1, 1, 3, fSU2[2, 3, j1] ] ZZ[4, 3] ZZ[4, 4] ZZ[5, 1] + sum[j1, 1, 3, fSU2[1, 3, j1] fSU2[2, 3, j1]] ZZ[3, 4] ZZ[4, 1] ZZ[5, 3] + sum[j1, 1, 3, fSU2[1, 3, j1] fSU2[2, 3, j1]] ZZ[3, 1] ZZ[4, 4] ZZ[5, 3] + sum[j1, 1, 3, fSU2[2, 3, j1] ] ZZ[4, 1] ZZ[4, 4] ZZ[5, 3] + (sum[j1, 1, 3, fSU2[2, 3, j1] ] ZZ[4, 1] ZZ[4, 3] + sum[j1, 1, 3, fSU2[1, 3, j1] fSU2[2, 3, j1]] (ZZ[3, 3] ZZ[4, 1] + ZZ[3, 1] ZZ[4, 3])) ZZ[5, 4] + sum[j1, 1, 3, fSU2[1, 3, j1] ] (ZZ[3, 1] ZZ[3, 4] ZZ[5, 3] + ZZ[3, 3] (-2 ZZ[3, 4] ZZ[5, 1] + ZZ[3, 1] ZZ[5, 4]))) ZZ[5, 5] + sum[j1, 1, 3, fSU2[1, 2, j1] fSU2[1, 3, j1]] (-2 ZZ[3, 1] ZZ[3, 5] (ZZ[4, 4] ZZ[5, 3] + ZZ[4, 3] ZZ[5, 4]) + ZZ[3, 4] (ZZ[3, 5] (ZZ[4, 3] ZZ[5, 1] + ZZ[4, 1] ZZ[5, 3]) - 2 ZZ[3, 3] (ZZ[4, 5] ZZ[5, 1] + ZZ[4, 1] ZZ[5, 5]) + ZZ[3, 1] (ZZ[4, 5] ZZ[5, 3] + ZZ[4, 3] ZZ[5, 5])) + ZZ[3, 3] (ZZ[3, 5] (ZZ[4, 4] ZZ[5, 1] + ZZ[4, 1] ZZ[5, 4]) + ZZ[3, 1] (ZZ[4, 5] ZZ[5, 4] + ZZ[4, 4] ZZ[5, 5])))
|m1.m2*m3.m4<>(-(-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------))<>m1.m3*m2.m4<>(--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------)<>m1.m4*m2.m3
2 2 2 2 2 2 2 2 2 2 2 ZZ[3, 1] ZZ[3, 5] ZZ[4, 3] ZZ[4, 4] - 2 ZZ[4, 4] ZZ[4, 5] ZZ[5, 1] ZZ[5, 3] + ZZ[4, 3] ZZ[4, 5] ZZ[5, 1] ZZ[5, 4] + ZZ[3, 1] ZZ[3, 5] ZZ[5, 3] ZZ[5, 4] + ZZ[4, 1] ZZ[4, 5] ZZ[5, 3] ZZ[5, 4] + (ZZ[4, 1] ZZ[4, 4] ZZ[5, 3] + ZZ[4, 3] (ZZ[4, 4] ZZ[5, 1] - 2 ZZ[4, 1] ZZ[5, 4])) ZZ[5, 5] + ZZ[3, 4] ((ZZ[3, 3] ZZ[4, 1] + ZZ[3, 1] ZZ[4, 3]) ZZ[4, 5] - 2 ZZ[3, 5] (ZZ[4, 1] ZZ[4, 3] + ZZ[5, 1] ZZ[5, 3]) + (ZZ[3, 3] ZZ[5, 1] + ZZ[3, 1] ZZ[5, 3]) ZZ[5, 5]) + ZZ[3, 3] (ZZ[3, 5] (ZZ[4, 1] ZZ[4, 4] + ZZ[5, 1] ZZ[5, 4]) - 2 ZZ[3, 1] (ZZ[4, 4] ZZ[4, 5] + ZZ[5, 4] ZZ[5, 5]))
sum[j1, 1, 3, fSU2[1, 2, j1] ] (ZZ[3, 4] (2 ZZ[3, 5] ZZ[4, 1] ZZ[4, 3] - (ZZ[3, 3] ZZ[4, 1] + ZZ[3, 1] ZZ[4, 3]) ZZ[4, 5]) - ZZ[4, 4] (ZZ[3, 1] ZZ[3, 5] ZZ[4, 3] + ZZ[3, 3] (ZZ[3, 5] ZZ[4, 1] - 2 ZZ[3, 1] ZZ[4, 5]))) + sum[j1, 1, 3, fSU2[1, 2, j1] fSU2[2, 3, j1]] ZZ[3, 5] ZZ[4, 3] ZZ[4, 4] ZZ[5, 1] + sum[j1, 1, 3, fSU2[1, 2, j1] fSU2[2, 3, j1]] ZZ[3, 4] ZZ[4, 3] ZZ[4, 5] ZZ[5, 1] - 2 sum[j1, 1, 3, fSU2[1, 2, j1] fSU2[2, 3, j1]] ZZ[3, 3] ZZ[4, 4] ZZ[4, 5] ZZ[5, 1] + sum[j1, 1, 3, fSU2[1, 2, j1] fSU2[2, 3, j1]] ZZ[3, 5] ZZ[4, 1] ZZ[4, 4] ZZ[5, 3] + sum[j1, 1, 3, fSU2[1, 2, j1] fSU2[2, 3, j1]] ZZ[3, 4] ZZ[4, 1] ZZ[4, 5] ZZ[5, 3] - 2 sum[j1, 1, 3, fSU2[1, 2, j1] fSU2[2, 3, j1]] ZZ[3, 1] ZZ[4, 4] ZZ[4, 5] ZZ[5, 3] + 2 sum[j1, 1, 3, fSU2[1, 3, j1] ] ZZ[3, 4] ZZ[3, 5] ZZ[5, 1] ZZ[5, 3] + 2 sum[j1, 1, 3, fSU2[1, 3, j1] fSU2[2, 3, j1]] ZZ[3, 5] ZZ[4, 4] ZZ[5, 1] ZZ[5, 3] + 2 sum[j1, 1, 3, fSU2[1, 3, j1] fSU2[2, 3, j1]] ZZ[3, 4] ZZ[4, 5] ZZ[5, 1] ZZ[5, 3] + 2 sum[j1, 1, 3, fSU2[2, 3, j1] ] ZZ[4, 4] ZZ[4, 5] ZZ[5, 1] ZZ[5, 3] - 2 sum[j1, 1, 3, fSU2[1, 2, j1] fSU2[2, 3, j1]] ZZ[3, 5] ZZ[4, 1] ZZ[4, 3] ZZ[5, 4] + sum[j1, 1, 3, fSU2[1, 2, j1] fSU2[2, 3, j1]] ZZ[3, 3] ZZ[4, 1] ZZ[4, 5] ZZ[5, 4] + sum[j1, 1, 3, fSU2[1, 2, j1] fSU2[2, 3, j1]] ZZ[3, 1] ZZ[4, 3] ZZ[4, 5] ZZ[5, 4] - sum[j1, 1, 3, fSU2[1, 3, j1] ] ZZ[3, 3] ZZ[3, 5] ZZ[5, 1] ZZ[5, 4] - sum[j1, 1, 3, fSU2[1, 3, j1] fSU2[2, 3, j1]] ZZ[3, 5] ZZ[4, 3] ZZ[5, 1] ZZ[5, 4] - sum[j1, 1, 3, fSU2[1, 3, j1] fSU2[2, 3, j1]] ZZ[3, 3] ZZ[4, 5] ZZ[5, 1] ZZ[5, 4] - sum[j1, 1, 3, fSU2[2, 3, j1] ] ZZ[4, 3] ZZ[4, 5] ZZ[5, 1] ZZ[5, 4] - sum[j1, 1, 3, fSU2[1, 3, j1] ] ZZ[3, 1] ZZ[3, 5] ZZ[5, 3] ZZ[5, 4] - sum[j1, 1, 3, fSU2[1, 3, j1] fSU2[2, 3, j1]] ZZ[3, 5] ZZ[4, 1] ZZ[5, 3] ZZ[5, 4] - sum[j1, 1, 3, fSU2[1, 3, j1] fSU2[2, 3, j1]] ZZ[3, 1] ZZ[4, 5] ZZ[5, 3] ZZ[5, 4] - sum[j1, 1, 3, fSU2[2, 3, j1] ] ZZ[4, 1] ZZ[4, 5] ZZ[5, 3] ZZ[5, 4] - (sum[j1, 1, 3, fSU2[1, 2, j1] fSU2[2, 3, j1]] (2 ZZ[3, 4] ZZ[4, 1] ZZ[4, 3] - (ZZ[3, 3] ZZ[4, 1] + ZZ[3, 1] ZZ[4, 3]) ZZ[4, 4]) + sum[j1, 1, 3, fSU2[1, 3, j1] fSU2[2, 3, j1]] ZZ[3, 4] ZZ[4, 3] ZZ[5, 1] + sum[j1, 1, 3, fSU2[1, 3, j1] fSU2[2, 3, j1]] ZZ[3, 3] ZZ[4, 4] ZZ[5, 1] + sum[j1, 1, 3, fSU2[2, 3, j1] ] ZZ[4, 3] ZZ[4, 4] ZZ[5, 1] + sum[j1, 1, 3, fSU2[1, 3, j1] fSU2[2, 3, j1]] ZZ[3, 4] ZZ[4, 1] ZZ[5, 3] + sum[j1, 1, 3, fSU2[1, 3, j1] fSU2[2, 3, j1]] ZZ[3, 1] ZZ[4, 4] ZZ[5, 3] + sum[j1, 1, 3, fSU2[2, 3, j1] ] ZZ[4, 1] ZZ[4, 4] ZZ[5, 3] - 2 (sum[j1, 1, 3, fSU2[2, 3, j1] ] ZZ[4, 1] ZZ[4, 3] + sum[j1, 1, 3, fSU2[1, 3, j1] fSU2[2, 3, j1]] (ZZ[3, 3] ZZ[4, 1] + ZZ[3, 1] ZZ[4, 3])) ZZ[5, 4] + sum[j1, 1, 3, fSU2[1, 3, j1] ] (ZZ[3, 1] ZZ[3, 4] ZZ[5, 3] + ZZ[3, 3] (ZZ[3, 4] ZZ[5, 1] - 2 ZZ[3, 1] ZZ[5, 4]))) ZZ[5, 5] + sum[j1, 1, 3, fSU2[1, 2, j1] fSU2[1, 3, j1]] (-(ZZ[3, 1] ZZ[3, 5] (ZZ[4, 4] ZZ[5, 3] + ZZ[4, 3] ZZ[5, 4])) + ZZ[3, 4] (-(ZZ[4, 5] (ZZ[3, 3] ZZ[5, 1] + ZZ[3, 1] ZZ[5, 3])) + 2 ZZ[3, 5] (ZZ[4, 3] ZZ[5, 1] + ZZ[4, 1] ZZ[5, 3]) - (ZZ[3, 3] ZZ[4, 1] + ZZ[3, 1] ZZ[4, 3]) ZZ[5, 5]) - ZZ[3, 3] (ZZ[3, 5] (ZZ[4, 4] ZZ[5, 1] + ZZ[4, 1] ZZ[5, 4]) - 2 ZZ[3, 1] (ZZ[4, 5] ZZ[5, 4] + ZZ[4, 4] ZZ[5, 5])))
viewtopic.php?f=5&t=523&sid=675a4bac281 ... 1816d6c9b5 however in my case the new gauge symmetry is not a SU(3), but a SU(2). Any suggestions?