I am working to implement a flavour-changing neutral current (FCNC) between the b and s quarks at tree level in SARAH. To do this, I am trying to figure out the best way to "flavour-decompose" the quark fields in SM.m so that I can eventually make two flavours oppositely charged under a new U(1)' gauge group. I am considering three approaches to this. Could you help me by pointing out which approach, if any, seems viable?
The simplest way to flavour-decompose the quark fields seems to be as outlined in https://gitlab.in2p3.fr/goodsell/sarah/ ... omposition:
Code: Select all
DEFINITION[EWSB][Flavors]= { ...
{Field, {Name 1, Name 2, ... }},
... }
As an second approach, I am decomposing the fields upon definition. First, I define the quark fields as such:
Code: Select all
FermionFields[[1]] = {q01,1, {u01L, d01L}, 1/6, 2, 3};
FermionFields[[2]] = {q02,1, {u02L, d02L}, 1/6, 2, 3};
FermionFields[[3]] = {q03,1, {u03L, d03L}, 1/6, 2, 3};
FermionFields[[4]] = {d01,1, conj[d01R], 1/3, 1, -3};
FermionFields[[5]] = {d02,1, conj[d02R], 1/3, 1, -3};
FermionFields[[6]] = {d03,1, conj[d03R], 1/3, 1, -3};
FermionFields[[7]] = {u01, 1, conj[u01R], -2/3, 1, -3};
FermionFields[[8]] = {u02, 1, conj[u02R], -2/3, 1, -3};
FermionFields[[9]] = {u03,1, conj[u03R], -2/3, 1, -3};
Code: Select all
LagHC = -(Yd1 conj[H].d01.q01 + Yd2 conj[H].d02.q02 + Yd3 conj[H].d03.q03 + Ye conj[H].e.l + Yu1 u01.q01.H + Yu2 u02.q02.H + Yu3 u03.q03.H);
Finally, I rewrite the mixing in the matter sector as follows:
Code: Select all
DEFINITION[EWSB][MatterSector]=
{{{{d01L,d02L,d03L}, {conj[d01R],conj[d02R],conj[d03R]}}, {{DL,Vd}, {DR,Ud}}},
{{{u01L,u02L,u03L}, {conj[u01R],conj[u02R],conj[u03R]}}, {{UL,Vu}, {UR,Uu}}},
{{{eL}, {conj[eR]}}, {{EL,Ve}, {ER,Ue}}}};
Code: Select all
Transpose::nmtx: "The first two levels of {{v,vSM},{Ye,YeSM},{YdSM[1,1]},{YdSM[1,2]},{YdSM[1,3]},{YdSM[2,1]},{YdSM[2,2]},{YdSM[2,3]},{YdSM[3,1]},{YdSM[3,2]},{YdSM[3,3]},{YuSM[1,1]},{YuSM[1,2]},{YuSM[1,3]},{YuSM[2,1]},{YuSM[2,2]},{YuSM[2,3]},{YuSM[3,1]},{YuSM[3,2]},{YuSM[3,3]},{g1,g1SM},{g2,g2SM},{g3,g3SM}} cannot be transposed.
Code: Select all
Yu1 = YuSM
Error: Incompatible ranks 0 and 2 in assignment at (1)
Finally, as a third approach I am trying to decompose the quark fields and then "recomposing" them into the format used in SM.m to avoid any issues downstream. For this, I would like to define the quark generations separately as
Code: Select all
FermionFields[[1]] = {q01,1, {u01L, d01L}, 1/6, 2, 3};
FermionFields[[2]] = {q02,1, {u02L, d02L}, 1/6, 2, 3};
FermionFields[[3]] = {q03,1, {u03L, d03L}, 1/6, 2, 3};
FermionFields[[4]] = {d01,1, conj[d01R], 1/3, 1, -3};
FermionFields[[5]] = {d02,1, conj[d02R], 1/3, 1, -3};
FermionFields[[6]] = {d03,1, conj[d03R], 1/3, 1, -3};
FermionFields[[7]] = {u01, 1, conj[u01R], -2/3, 1, -3};
FermionFields[[8]] = {u02, 1, conj[u02R], -2/3, 1, -3};
FermionFields[[9]] = {u03,1, conj[u03R], -2/3, 1, -3};
Code: Select all
FermionFields[[10]] = {q, 3, ..., 1/6, 2, 3}; (* ... placeholder *)
FermionFields[[11]] = {d, 3, ..., 1/3, 1,-3};
FermionFields[[12]] = {u, 3, ...,-2/3, 1,-3};
Thank you for your time and best regards,
Anders